

A Scalable and Flexible Packet Forwarding Method

for Future Internet Networks

Andrzej Beben, Piotr Wiśniewski

Warsaw University of Technology

Warsaw, Poland

{abeben, p.wisniewski}tele.pw.edu.pl

Jordi Mongay Batalla

National Institute of Telecommunications

Warsaw, Poland

jordim@interfree.it

George Xilouris

NCSR Demokritos

Athens, Greece

xilouris@iit.demokritos.gr

Abstract—The paper proposes a novel flexible packet

forwarding (FPF) method designed for Future Internet networks.

It follows the source routing principle at an inter-domain level

and applies the list of domain customized identifiers to forward

packets on the end-to-end path. The main features are capability

to introduce flexible routing path selection, native support for

multipath and multicast packet transfer, ability for exploitation

of advanced in-network packet processing as, e.g., content

recoding and caching. The performance and scalability of FPF

approach were evaluated by experimentation on developed

prototype as well as by scalability studies assuming Internet-scale

network scenario.

Future Internet, source routing, packet forwarding, SDN

I. INTRODUCTION

The severe limitations of the Internet architecture motivate

research towards Future Internet (FI), also called New

Generation Network (NWGN) or Internet 3.0 [1, 2]. The main

constraints stem from the ossification of TCP/IP architecture

that prevents innovations at the network level. This ossification

comes from: (1) the global scope and location dependency of

the IP addresses, (2) destination sink tree routing (3) lack of

multi-path transfer, (4) hardly scalable multicast in large-scale,

multi-domain networks, and (5) closed routers (“walled

gardens” created by vendors) that render the implementation of

new packet processing impossible. Current research

approaches to obviate these limitations focus on Software

Define Networking (SDN) [3] that enables implementation of

novel management and control mechanisms by providing clear

separation of control and data planes.

In this paper we propose and evaluate a Flexible Packet

Forwarding (FPF) method that follows the source routing

principle (which offers high flexibility in routing path

selection) and is open for innovative in-network packet

processing functions required by FI applications in the data

plane. Its features go beyond the State of the Art on forwarding

mechanisms, as shown in Section II. Besides the specification

of FPF method (Section III), the main achievements of the

presented research are the development of both software and

hardware prototypes (Section IV) and the performed

experiments proving that FPF performance is slightly better

than IP router (Section V). Moreover, in Section VI we present

scalability analysis showing that FPF is suitable for Internet-

scale networks. We believe that FPF is a step forward towards

the extension of the SDN concept by instilling new capabilities

in the data plane while improving SDN scalability thanks to the

reduction of state information in SDN forwarders [4].

II. ANALYSIS OF RELATED WORKS

One of the main FI challenges is to design effective routing

and forwarding methods that overcame limitations of the IP

protocol. The key objectives are providing more flexible

routing path selection and enabling innovative in-network

packet processing, while assuring scalability of the solution.

Many of recently proposed approaches are based on the source

routing principle, which is not really a new idea. The original

studies on exploiting source routing in IP networks are

presented in [5]. Authors proposed to extend packet header

with route sequence, which includes addresses of intermediate

nodes on the path towards destination. This solution introduced

several advances, e.g., enlarged flexibility and support for

multicast, but it was not widely accepted due to significant

overhead of packet header and security threats coming from

possible attacks by replacing the addresses of intermediate

nodes in the packet header. Similar constraints have MPLS

stacking approach [6]. In order to overcome these limitations,

the pathlet routing proposal [7] uses node identifiers (vnode)

instead of IP addresses of intermediate nodes. The end-to-end

routing path is created as a concatenation of path segments,

called pathlets. A pathlet may be defined locally inside one

Autonomous System (AS) or may span several ASs. In the

latter case, node identifiers must be globally unique, so the

node identifier is extended to the pair (AS number, vnode).

From the development point of view, the pathlet routing

requires deployment of new forwarding entities.

The original approach for source routing multicast was

proposed by LIPSIN [8]. It exploits Bloom Filters (BF) for

creating multicast tree identifiers, which are used by

intermediate nodes to forward packet copies to selected output

ports. The BF uses hash functions that significantly reduce

overhead but suffer from false positive outcomes.

The segment routing [9] is a new approach for source

routing that has been recently proposed by IETF SPRING WG.

It assumes that nodes forward packets on the basis of a list of

segments included in the packet header. Each segment is a

32-bit-long identifier that can be used either for packet

forwarding or packet processing (e.g., multicast). The segment

routing is flexible and open to innovations, but constant

segment size leads to scalability constrain and security threats.

This work was undertaken under the Pollux II IDSECOM project
supported by the National Research Fund Luxembourg (FNR) and the

National Centre for Research and Development (NCBiR) in Poland.

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Next Generation Networking Symposium

1986

The proposed FPF method has been designed and

developed in parallel with pathlet and segment routing

proposals, resulting in some similarities with them.

Nevertheless, the FPF main advantages over pathlet and

segment routing correspond to: (i) local (defined in node)

scope of LIDs, which significantly reduces LID size, (ii)

variable size of LID, which makes feasible adaptation to

domain size and (iii) openness for innovative in-network

packet processing. As we show later in Section VI, the first two

features are of the great importance on FPF scalability.

III. FLEXIBLE PACKET FORWARDING METHOD

The proposed Flexible Packet Forwarding method assumes

that packets are forwarded based on the domain-specific, Local

IDentifiers (LIDs) included in the packet header. The vector of

identifiers determines the unidirectional end-to-end routing

path through a sequence of domains towards destination. Each

LID is defined in local scope, so its structure and semantics is

understandable only by Forwarding Entities (FE) located

within a given domain. The FPF method enables FEs to

maintain only the neighborhood information, i.e., how to

forward packet to the peering FEs. This feature significantly

reduces the LID size and consequently the size of forwarding

tables. Due to the open nature of LIDs each domain may

define, aside from basic packet forwarding function, other

specific packet processing functions as, e.g., enforcing QoS

handling, sending packet copies to multicast tree, storing

content in the cache. The FPF header, defining the routing

path, is attached and removed by the edge FEs located close to

the source and the destination. The ingress edge FE assigns

packets to routing paths using packet filters. They are defined

by the network control plane in an explicit or implicit manner,

as explained below in Section III B.

The FPF method assumes that the network control plane is

in charge of calculating the end-to-end routing paths by

concatenation of LIDs defined by consecutive domain on the

routing path. It can use of any multipath routing protocols, e.g.

as proposed by pathlet routing [7], Routing Awareness Entity

[10], or it can be set even manually imposing the end-to-end

routing inside of one network domain. Therefore, the

establishment and selection of end-to-end routing paths are not

within the scope of this paper and we only assume that such

paths do exist.

Fig. 1 presents the concept of FPF. Let us consider an

exemplary packet flow, delivered from domain C to domain A

using routing path C-B-A, which differs from IP routing going

through domain D. When FPF is being used, the edge FE

located in domain C intercepts packets matching the packet

Fig. 1. The concept of FPF method

filter and encapsulates them with the FPF header. This header

includes the vector of LIDs, [LIDB, LIDA], which determines

successive FEs on the path towards destination. Each FE uses

its LID from the FPF header. In our example, the LIDB defines

how to forward packet from the edge FE located in domain C

towards the first FE located in domain B. Then, the first FE in

domain B forwards the packet to the second FE in domain B

(see Fig.1) on the basis of the information provided by LIDA.

LIDA is also used by the second FE to forward the packet to

domain A (destination edge FE). Note, that LIDA is used by

both FEs located inside domain B and both FEs know where

and how the packet must be forwarded. Finally, the destination

edge FE in domain A removes the FPF header and sends

packets directly to the destination device.

FPF has been designed to coexist with different network

technologies; i.e., it may exploit different underlying packet

transfer technologies between peering FEs and it even allows

for delivering any type of data units between the source and

destination domains. In this case, a correct protocol specific

filter should be defined at the ingress edge FE, which enables

packet classification and en/de-capsulation of FPF header.

Another important feature is flexibility in the inter-domain

routing selection thanks to the fact that inter-domain routing is

based uniquely on the information included in the packet

header (LID vector). For example, the network control plane

could decide special routing for any flow set, ranging from

micro flow (or even one single packet), through any level of

aggregated flows, up to all flows going towards the same

destination (destination sink tree). FPF approach natively

supports multipath packet transfer allowing a given flow to be

delivered on multiple routing paths. Moreover, the FPF makes

the dynamic changes of routing rules feasible just by updating

the vector of LIDs inserted by the edge FE.

Fig. 2. The FPF packet header

The FPF header, depicted in Fig. 2, covers the following

fields: (1) Length (1 byte) indicates the number of bytes

required for storing the LID vector in the header; (2) Index

(1 byte) indicates the offset to the first byte of the LID used in

the current domain. The Index value is increased by the border

FE when the packet leaves its domain. The ingress edge FE

sets Index equal to 0 after classification and it increases Index

in the case when the ingress edge FE is also the last FE in this

domain; and (3) LID Vector includes the sequence of LIDs

corresponding to the inter-domain routing path. We assume

that LIDs used inside a domain should be of constant size in

order to simplify matching process in FE forwarding table; but

different domains may use LIDs of different sizes. Anyway,

the LID size should be minimized in order to reduce the

overhead (this will be discussed in Section VI).

Note that FPF header slightly increases the original packet

size. Therefore, the underlying transmission systems may need

segmentation/reassembly function for transferring FPF packets.

Destination

Source

FE

FE

packet

packetAB

IP routing path

FPF routing path

Edge FE

`

Domain B

Domain C

Domain D

FE
packet

packetAB

Edge FE

packetAB

Flexible Packet Forwarding

Domain A

Length Index LID vector

1 byte 1 byte Length bytes

Globecom 2014 - Next Generation Networking Symposium

1987

A. FPF forwarding process

The forwarding process is performed by each FE when it

receives a packet with FPF header. Each FE keeps forwarding

table (Input interface, LID) → (forwarding rule), as presented

in Table I. This table shows exemplary forwarding rules

corresponding to the packet transfer on Ethernet and multicast

tree. All LIDs inside a given domain have constant size, so, the

FE uses constant length matching LID in the forwarding table.

The LID identifies the forwarding rule that describes “how to

forward packet to the next FE”. Note that this information has a

long-term validity and it is updated by the control plane

according to routing changes.

TABLE I. EXEMPLARY FORWARDING TABLE IN FE

Input

interface
LID Forwarding rule

#1 {0xa1} Send packets to queue Premium on the

interface #9 using Ethernet frame with

destination address a1:01:02:ff:01:d9

#3 {0xf1} Create packet copies for the following

multicast leafs:

1) update LID vector to 0xa1e3d3 and

handle packet by forwarding engine

2) update LID vector to 0xaabce8 and

handle packet by forwarding engine

Upon receiving a packet with FPF header, the FE performs

the following steps: (1) it registers the input interface if_in

where the packet arrived; (2) it performs sanity check of Index

filed: if Index value is greater than Length, then FE drops the

packet; if Index is equal to Length, then FE removes the FPF

header and sends the packet directly to the destination. Note

that this is the case of last FE in the path; (3) it performs

lookup in the forwarding table using the if_in and the LID

pointed by Index to find the appropriate forwarding rule, (4) if

the packet goes to the next domain, the FE increases the value

of Index to point out at the next LID and (5) it processes the

frame accordingly with forwarding rule and sends the packet to

the output interface.

B. Packet encapsulation in edge FE

Packet encapsulation with FPF header is performed by the

ingress edge FE based on the packet encapsulation (rules)

table, which includes: (1) the multi-field packet filter to

identify packet flow, (2) the LID vector used for packet

forwarding, (3) timeout to remove expired filters and,

optionally, (4) other flow specific information as, e.g., session

identifier, traffic profile, etc. This optional information is used

for traffic policing, shaping, multicasting, etc. For TCP/IP

traffic, multi-field packet filtering is performed on the basis of

5-tuple including: Src. and Dest. addresses IPv4 or IPv6;

Protocol number (IPv4) or next header (IPv6); and Src. and

Dest. port numbers (optional). In case of non-IP protocols,

packet filters specific for such protocols should be provided.

The edge FE intercepts incoming packets and performs lookup

in the encapsulation table. If a packet matches one of the

packet filters, the FE encapsulates the packet following the

encapsulation rule, resets the timeout and passes the packet to

the FPF forwarding process. If a packet does not match any

filter, then it is forwarded by using standard forwarding (e.g.,

IP) or it is dropped. The rules in encapsulation table are

managed by higher layer (network management and control)

and may be set in two ways: explicit and implicit.

1) Explicit approach

In this approach, packet encapsulation rules are configured

per flow in advance before the beginning of flow transmission.

The packet filter configuration is done explicitly by the

network management and control system, e.g., SDN controller,

and it is based on the characteristics of the expected flows. For

each new flow request, the controller selects the transfer path

(from the set of available established off-line paths) and

configures appropriate packet filter in the edge FE. The explicit

approach is suitable for the system with distinct flow set-up

phase such as Next Generation Networks (NGN) or some

Information Centric Networks (ICN) [11].

2) Implicit approach

In this approach, the packet encapsulation rules are

configured dynamically on the basis of Deep Packet

Inspection (DPI) [12]. When the first packet of the new flow

arrives to the edge FE and there is no matching rule in the

encapsulation table, then a copy of the packet is passed to the

so-called Flow Aware Classifier (FAC). The FAC performs

DPI on the copy of the packet, while the original packet is

forwarded by standard routing rules. Some protocols may

require more than one packet in order to univocally classify

the flow; for example, video flow using RTP protocol can be

identified by checking the increment of sequence number in

the RTP header between two successive packets. Therefore, a

packet counter controlling the packets passed to DPI may be

required for some protocols. Following the higher layers

information assessed during the DPI (e.g., the flow is VoIP

stream) and the management instructions for such a kind of

flows, a new packet encapsulation rule is configured in the

encapsulation.

The DPI algorithms may inspect protocol/service/content

related fields that are retrieved by information above L4. This

approach facilitates flexibility in the creation of the filters and

has been proposed in order to cope with the emergence of

multimedia services, terminal mobility as well as the evolution

of End User model from single direction service consumer to

content creator and distributor (i.e., prosumer) [13].

IV. FPF PROTOTYPES

We developed the FE prototypes to prove theirs feasibility

and evaluate performance of FPF method. They were

implemented on software and hardware platforms, i.e., Linux

based server and specialized network processor board - EZchip

NP-3 EZappliance (EZappliance for short) [14].

Prototypes utilize the commonly used protocols: Ethernet

802.3 at link layer, IPv4/IPv6 at network layer, and TCP/UDP

for transport. We implemented FPF at the 2.5 layer, so that IP

packets are encapsulated with the FPF header and inserted into

Ethernet frames. We use experimental value of ether type

(0xcccc) of Ethernet header to distinguish FPF packets.

Moreover, FPF coexists with IPv4/IPv6 forwarding.

Globecom 2014 - Next Generation Networking Symposium

1988

Fig. 3 depicts the functional block diagram of FE prototype.

FE is composed of forwarding and encapsulation engines,

FAC, and forwarding and encapsulation configuration agents.

The forwarding engine executes LID-based forwarding

following the rules handled by the forwarding agent. The

encapsulation engine intercepts packets received from an

access network, classifies them based on 5-tuple packet filter

and encapsulates them with the FPF header according to the

encapsulation table. The FAC keeps track of running flows and

manages entries in the encapsulation table (via encapsulation

agent). In particular, FAC sniffs incoming IP traffic, detects

new flows, and finally classifies them (using DPI). Sniffing is

performed to decide if a packet belongs to a new flow enabling

DPI to be executed only for a few packets per new flow.

Fig. 3. FE prototype diagram

Edge FE has all modules, while core FE is simplified and

uses only forwarding engine and configuration agent.

The FPF packets traversing through FE are processed

exclusively by the forwarding engine, arrows {1},{2} in Fig. 3.

The FPF packets exiting the core network are decapsulated by

forwarding engine {1}, and forwarded by IP logic {6},{7}. The

IP packets received by core FE are processed according to the

standard IP stack {9},{8}.

All IP packets coming to edge FE are intercepted and

classified {3}. If a packet matches a rule in encapsulation table,

it is encapsulated and then switched by the forwarding engine

{4},{2}. Otherwise, it is passed to IP stack {5},{7}/{8}.

A. Linux based prototype

The basic FE prototype was developed for Linux platform.

The source code is available at

tnt.tele.pw.edu.pl/software_fpf.php. The encapsulation and

forwarding modules are implemented as loadable Linux kernel

modules to assure high efficiency. The configuration agents

are developed as user space programs in Python and

communicate with kernel modules through netlink inter-

process communication provided by libnl library.

The forwarding engine is implemented in the Linux kernel

as a new protocol handler (called FPF protocol handler),

which is called-back when a FPF packet distinguished by

0xcccc ether type value arrives to the kernel. Then the

forwarding engine: performs sanity check, and i) decapsulates

the IP packet and injects it back to the bottom of protocol

stack with netif_receive_skb function (if index field is equal to

length field), or ii) performs LID-based forwarding and

transfers the packet to the chosen network device driver (with

dev_queue_xmit function) or drops the packet if LID value is

not found in the forwarding table. For implementation

simplicity, we have assumed that each LID is one byte long.

The FE Linux prototype supports the following link layer

technologies: Ethernet, VLAN Ethernet and GRE tunnels.

The kernel encapsulation module is based on netfilter

framework. It exploits two “hooks” for each IP version. The

first hook is used to intercept incoming IP packets at

pre-routing stage, whereas the second hook is used to intercept

packets coming from local processes (we assume that FPF

node can generate FPF packets). If a packet matches any

encapsulation rule, then it is encapsulated with the appropriate

FPF header and injected back to the bottom of protocol stack.

The FAC exploits LibPCAP library to capture packets and

parse IP and transport headers. A hash-map based Flow class

is introduced to keep track of running flows. Notice that the

packet processing path through kernel is not affected. All the

information required by FAC is copied, allowing packets to be

forwarded unaltered, using the default forwarding paths, until

the classification of the flow is done.

The classification is based on the heuristic and the finite

state machines matching algorithms. They are capable of

classifying flows based on the L7 protocol information like

RTP header extensions or SEI messages (Supplemental

Enhancement Information) contained in the payload for

MPEG-4/SVC headers.

B. EZappliance based prototype

The core FE was also developed on EZappliance hardware

platform. EZappliance contains NP-3 network processor [14]

that provides flexible data packet processing, and build-in

Linux based host CPU system that performs control plane

functionalities [15]. The NP-3 processor itself is composed of a

pipeline of heterogeneous Task-Optimized Processors (TOPs)

tailored for different stages of packet processing (TOPparse,

TOPsearchI, TOPresolve, TOPsearchII, TOPmodify) [15].

The core FE was implemented in dedicated NP-3

processor assembly language. For incoming Ethernet frames,

the TOPparse code analyses ether type field, parses FPF

header, performs sanity check and constructs search key for

FPF forwarding table. TOPsearchI processor looks up LID

values in forwarding table and, next, the TOPresolve makes

forwarding decision and picks optional modifications. Finally,

TOPmodify processor performs modifications (increase of

index filed or decapsulation). Our implementation of FE

supports Ethernet and VLAN Ethernet.

V. PERFORMANCE EVALUATION

This section focuses on evaluation of developed FPF

prototype. We evaluate performance of three basic FPF

modules, i.e., (1) FPF forwarding engine (throughput), (2)

encapsulation engine (throughput for increasing number of

running flows), and (3) FAC (throughput for increasing

number of new flows). Moreover, we qualify the FE

performance by comparing it with IPv6 software router.

edge FE
core FE

n
et

w
o

rk
 in

te
rf

ac
es

n
et

w
o

rk
 in

te
rf

ac
es

IP
packets

forwarding
engine

encapsulation
engine

IPv4/IPv6

FACforwarding
agent

IPv6/IPv4
data path

FPF data
path

configuration
 messages

{3}

{1}

{2}

{3a}

sniffing

{4}

{5}
{6}

{7}
{8}

IP
packets

FPF
packets

{9}

Linux kernel space/EZappliance

configuration interface

encapsulation
agent

Linux user space

Globecom 2014 - Next Generation Networking Symposium

1989

A. The FPF forwarding engine

The FPF forwarding engine is used in both core and edge

FEs, so its performance is crucial for the deployment of FPF

method. Following the RFC 2544, the throughput metric is

defined as the maximum rate of packet stream forwarded

without any packet losses, expressed in frames per second

(fps). We measure IPv6 throughput on the same machine as a

point of reference.

The testbed consists of Device Under Test (DUT) and

Automatic Test Equipment (ATE) interconnected by two

1 Gbps links in ring topology. The ATE generates the

measurement stream (FPF or IPv6) and sends it to DUT by the

first link. Then the stream is forwarded by preconfigured DUT

and sent back to ATE by the second link. As ATE, we used

Spirent TestCenter SPT-2000 chassis with hardware traffic

generator/analyser card CM-1G-D4. The prototype of FPF

forwarder (DUT) runs on either standard off-the-shelf Dell

PowerEdge R620 server (Linux deployment of FE) or

EZappliance. The server is equipped with Intel Xeon Processor

E5-2630L@2 GHz, 12GB RAM and Broadcom NetXtreme

BCM5719 network card and runs stack openSUSE 12.3.

To measure the throughput, we applied binary search

method with resolution of 1Mbps. We performed

measurements for at least the following frame sizes: 78B, 96B,

128B, 196B, 256B, 384B, 512B, 1024B and 1518B (includes

Ethernet checksum). As recommended in RFC2544, each test

iteration lasted 60 seconds (at least 4.8*10
6
 frames forwarded

by DUT). We repeated each test several times to delimit the

confidence intervals. As the 95% confidence intervals in all

tests (with the exception of FAC performance tests, see Section

V.C) are lower than 2% we do not present them for clarity.

In the first test scenario we evaluated performance of Linux

based prototype. Fig. 4 presents FPF and IPv6 throughputs

measured for different frame sizes and plotted against maximal

theoretical throughput of 1Gbps Ethernet link. We observe that

FPF throughput is noticeably higher than IPv6 throughput for

frames sizes smaller than 256B and, above that size, both

throughputs are equal to maximal theoretical value.

Fig. 4. Forwarding throughput of FE vs. IP router for software prototype

We conducted throughput evaluations in two other

hardware devices and different Linux distributions. We

observe that FPF and IPv6 throughputs are on a comparable

level when network interface is a bottleneck, whereas FPF

throughput is higher (up to twice) when the bottleneck is due to

CPU limitations. This corresponds to the simpler packet

processing in the FE in comparison to the IP stack. The FPF

forwarding is less complex thanks to small and constant size

LIDs. Such LIDs significantly simplify lookup process in

forwarding table due to limited table size and simpler packet

matching (constant size vs. the longest prefix matching).

In the second test scenario we evaluated performance of the

network processor based prototype. As EZappliance is capable

of forwarding several gigabits of traffic per second (around

ten-odd) and the interfaces are limited to 1 Gbps, we

interconnected a few interfaces creating local loops. Next, we

prefetched FPF forwarding table with one LID per interface

enabling the same FPF stream to be concurrently forwarded by

DUT a number of times. As a result, thanks to the flexibility of

FPF method, we have measured FPF throughput, which was

not possible in case of IP routing.

Fig. 5 presents the FE throughput plotted against theoretical

value. We calculated the theoretical value assuming the typical

bandwidth of SPI4.2 interface (connecting NP-3 with Ethernet

aggregator [14]), which is equal to 12.8 Gbps. We observe that

the measured throughput differs slightly from the theoretical

value only for small frame sizes (under 128B). We conclude

that FPF engine is able to forward frames with the maximum

theoretical throughput of EZappliance proving the feasibility of

FPF method applied to a specialized network hardware.

Fig. 5. Forwarding throughput of FE for network processor based prototype

B. The encapsulation module

The performance of the edge FE is determined by the

number of concurrently classified flows (by encapsulation

module) and their total input rate. We analyzed the ability of

edge FE to intercept and handle large number of running flows

up to 16 thousands (16K). Let us remark that the performance

of core FE is independent from the number of running flows as

it depends only on the number of paths which is intrinsically

small (as shown in section VI).

The measurement method and scenario are the same as

described in previous subsection, but in this case, the number

of streams generated by the ATE ranges from 1K to 16K. Each

stream, distinguished by unique IPv6 source address, has equal

rate. We set the upper bound of number of streams to 16K

since this is the upper limit of G711 VoIP (64 kbps) streams on

1 Gbps link. In order to measure the worst case scenario we

configured DUT (Linux prototype) to intercept, encapsulate

packets from all incoming streams.

The throughputs measured for different number of ingress

streams are plotted in Fig. 6 against theoretical link throughput.

We can observe that the throughput slightly decreases when the

number of flows increases, which is caused by the growth of

classification complexity of packets (look-up time in

encapsulation table). Nevertheless this difference is small since

0 100 200 300 400 500 600 700 800 900 1000 1100
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

Frame size [B]

T
h
ro

u
g
h
p
u
t
[f
p
s
]

FPF

IPv6

Theory

x106

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

Frame size [B]

T
h
ro

u
g
h
p
u
t
[f
p
s
]

FPF

Theory

x106

Globecom 2014 - Next Generation Networking Symposium

1990

the encapsulation and forwarding time is constant. Moreover,

the throughput degradation relates only to relatively small

frames (smaller than 384B), proving feasibility of edge FE.

Fig. 6. Encapsulation throughput of Linux prototype

C. Flow Awareness Classifier

In order to evaluate the performance of FAC, we need to

assess the correlation between the capability of capturing

packet data and the arrival rate of new flows. In this context

DUT (Linux-based edge FE) is tested under traffic load with

variable flow arrival rate and two frame sizes: 128 and 1528B.

In order to exclude problems caused by the network interface

or the limitation of its hardware, the traffic is generated off-line

by software generator, and captured in LibPCAP compatible

trace files. Concretely, we created four trace files with 10, 100,

1K and 10K flows and the same number of packets in all the

files. These files are read by the FAC module using the highest

reading rate (allowed by the hardware and upper bounded by

the hard disk transfer rate). The tests compare the time T1 that

FAC uses to read the file and to process the flows (sniffing all

the packets and performing DPI for the first packet of each

flow) and the time T0 of reading the file without performing

any other extra operation.

Fig. 7. FAC performance (percentile of T0/T1) vs. number of flows

Since the test results may depend on the CPU occupation

and system clock, we repeated the tests several times in order

to extract the confidence intervals. These intervals resulted in

the range up to 18% of the mean values. As we may observe in

Fig. 7, the processing of small packets is more demanding than

the processing of large ones, which can be imputed to the

sniffing operations performed by LibPCAP library. Moreover,

the sniffing capacity is irrespective of the number of flows until

a certain limit, which is sensible since the sniffing operations

do not change for increasing number of flows (note that the

table with the currently running flows has constant length equal

to 20,000 flows in all the tests).

From the graph, it can be deduced that FAC is able to

capture and process DPI over 1K simultaneous flows, but when

the number of flows reaches 10K, t hen the edge FE needs

twice more time for inspecting the flows. As a conclusion, we

may affirm that the DPI mechanism limits the number of

simultaneous flows that the edge FE can handle. Let us remark

that the implemented code of DPI has not been optimized.

VI. SCALABILITY EVALUATION

In this section, we assess scalability of FPF method. The

main questions about FPF scalability are related to the

overhead introduced by FPF header as well as the performance

of packet processing performed in FEs.

The FPF method follows the source routing principle,

where each packet includes LID vector determining the inter-

domain routing path towards destination. The FPF overhead

depends on the number of LIDs in the header and the sizes of

individual LIDs. The number of LIDs is correlated with the

length of inter-domain path because, in principle, each domain

“uses” one LID from the header. Therefore, the size of LID

vector can be estimated from the length of inter-domain paths.

In order to calculate the length of inter-domain routing

paths in the Internet, we use the CAIDA dataset [16], which

contains data describing the Internet topology. We have

analyzed the relations between the domains provided by RIPE

[17] and introduced shortest path algorithm for obtaining the

pdf of AS path length (over 1.3*10
9

inter-domain paths

connecting 36,878 domains), which are shown in Fig. 8.

Fig. 8. The pdf of AS path length, where (a) linear scale, (b) logarithmic scale

From these plots, we can observe that the majority (99%) of

paths cross less than 7 domains. The average length is 4.88 and

the longest path crosses 20 domains. Briefly, the number of

LIDs into the LID vector for the 99% of domains is 7 and the

longest LID vector contains 20 LIDs.

In addition to the number of LIDs (into the LID vector), we

must consider the length of individual LIDs. Basically, LIDs

are defined in each domain to univocally identify the intra and

inter-domain routes with associated per domain packet transfer

behavior between two consecutive domain ingress points (see

Fig. 1). In addition, an operator may define a number of

specific LIDs to trigger special packet processing functions,

e.g., multicasting.

The LID size depends on the number of: (1) routing paths

towards neighboring domains, which is directly related to

domain degree (DD), (2) per domain packet transfer behaviors

offered on the paths (DB), and (3) special packet processing

rules supported by the domain (SR). The upper bound of LID

size (LS
+
) expressed in bytes can be calculated by (1):

0 100 200 300 400 500 600 700 800 900 1000 1100
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

Frame size [B]

T
h
ro

u
g
h
p
u
t
[f
p
s
]

1K flows

4K flows

16K flows

Theory

x106

10
1

10
2

10
3

10
4

20

40

60

80

100

T
0
/T

1
 (

%
)

Number of flows

Frame size = 128B

Frame size = 1518B

0E+00

1E-01

2E-01

3E-01

4E-01

5E-01

1 3 5 7 9 11 13 15 17 19

path length [no domains]

(A) pdf of path length (linear-linear)

1E-09

1E-07

1E-05

1E-03

1E-01

1 3 5 7 9 11 13 15 17 19

path length [no domains]

(B) pdf of path length (log-linear)

Globecom 2014 - Next Generation Networking Symposium

1991

 ⌈ ⌉, (1)

where ⌈ ⌉ denotes the minimum integer not lower than x.

We use the upper bound LS+ to estimate the number of

bytes required in FPF header. For that purpose, we analyze

degree of all domains available in CAIDA dataset. By way of

example, we assume that each domain distinguishes three

domain packet transfer behaviors for each intra-domain routing

path and defines one special LID for each inter-domain link.

The obtained results are presented in Table II.

TABLE II. PERCENTILE OF DOMAINS’ DEGREE HISTOGRAM AND LID SIZE

Percentile

[%]

Number of

domains

Domain degree

(max.)

Number of

LIDs (max.)

LS+

[byte]

(max.)

90% 33190 6 24 1

99% 36509 60 240 1

99.50% 36693 128 512 2

99.99% 36874 2000 8000 2

100% 36878 2972 11888 2

We can observe that 99% of domains need only 1 byte-long

LID to identify all the paths, due to their small DD. Only

backbone domains (tier 1) and large tier 2 domains may require

2 bytes for the LIDs.

Based on the above analyses and taking into consideration

Length and Index fields we may conclude that, for majority of

end-to-end paths, the FPF header is shorter than 10 bytes. In

the worst case, i.e., for the longest routing path which would

hypothetically cross only large transit domains, the FPF header

does not exceed 42 bytes, which is as in IPv6. Since IPv6

scales properly in the Internet, we can affirm that also FPF is

scalable to the Internet (as far as overhead is concerned).

The second scalability issue focuses on the complexity of

FPF operations. For scalability reasons, we have designed the

core FE to be as simple as possible and left any complex packet

processing at the edge FE (in line with DiffServ approach).

As we have demonstrated in Section V, the core FE has

slightly better forwarding performance than IPv6 router. On the

other hand, the edge FE forwarding is more complex than edge

IP router because it performs packet interception and

encapsulation. Moreover, the edge FE handle information

about all running flows in encapsulation table. Anyway, the

performance tests confirmed that our simple (software-based)

implementation of edge FE running on ordinary hardware can

handle up to thousand active flows. If edge FE must handle

more traffic, then more edge FEs could be easily deployed.

Based on the above discussion, we conclude that FPF

forwarding approach is similar (as far as scalability concerns)

to DiffServ approach, which is regarded as scalable. So, we

may forecast not many scalability issues in FPF method.

VII. SUMMARY

This paper proposes novel Flexible Packet Forwarding

method, where nodes forward packets based on a vector of

Local Identifiers (LID) included in the packet header. Our

method allows for flexible routing path selection, enables

seamless multi-path and multicast routing at the inter-domain

level, which offers new opportunities for traffic engineering at

the inter-domain level. Moreover, the FPF method is open for

implementation of innovative in-network packet processing. In

the paper, we present developed FPF prototypes implemented

on Linux based server and EZchip NP-3 network processor.

We have made accessible the Linux based implementation to

the research community. The code is open-source and can be

further developed for specific purposes.

The performed experiments confirmed that FPF node

achieves slightly higher throughput than corresponding IPv6

router due to less complex packet processing. The scalability

studies showed that FPF method will fittingly scale in the

Internet thanks to the limited size of LID vector because of

limited length of the inter-domain paths and small degree of

domains in the Internet. An important FPF feature is that FPF

nodes use only local information, i.e. how to forward packets

to the next domain. Any per flow information as packet filters

are kept in the edge FE (configured by management and

control plane).

ACKNOWLEDGMENT

The authors would like to thank Jarosław Śliwiński for

fruitful discussions and support in FPF implementation.

REFERENCES

[1] S. Paul et al., “Architectures for future networks and the next

generation Internet: A survey”, CompCom No. 34, 2011

[2] T. Aoyama, “A New Generation Network: Beyond the Internet

and NGN”, IEEE ComMag, May 2009

[3] A. Lara et al., “Network Innovation using OpenFlow: A

Survey”, IEEE Com. Surveys & Tutorials, 2013

[4] M. Soliman et al., “Source routed forwarding with software

defined control, considerations and implications”, CoNEXT

Student, 2012

[5] P. Francis and R. Govindan, "Flexible Routing and Addressing

for a Next Generation IP," ACM Comp. Comm. Review 1994

[6] H. Gredler, “Supporting Source/Explicitly Routed Tunnels via

Stacked LSPs”, IETF draft, draft-gredler-spring-mpls-06, 2014

[7] P. Godfrey et al., “Pathlet routing”, ACM SIGCOMM 2009

[8] P. Jokela et al., “LIPSIN: line speed publish/subscribe inter-

networking”, SIGCOMM Comp. Com., 2009

[9] C. Filsfils et al., “Segment Routing Architecture”, IETF

SPRING WG, draft-filsfils-rtgwg-segment-routing-01, 2014

[10] G. Garcia et al., “COMET: Content mediator architecture for

Content-Aware Networks”, FNMS, 2011

[11] G. Xylomenos, et al., “A Survey of Information-Centric

Networking Research”, IEEE Com. Surveys & Tutorials, 2013

[12] T. Nguyen et al., “A survey of techniques for internet traffic

classification using machine learning” IEEE Com.Surveys, 2008

[13] TV and Media, “Identifying the need of tomorrow’s video

consumers”, ERICSSON Consumer Insight Report, 2013

[14] NP-3 and EZappliance Product Briefs, at www.ezchip.com

[15] R. Giladi, “Network Processors - Architecture, Programming

and Implementation”, Morgan Kaufman, 2008

[16] The Cooperative Association for Internet Data Analysis,

http://www.caida.org/.

[17] RIPE Network Coord. Centre, “Routing Information Service”,

http://www.ripe.net/data-tools/stats/ris/ris-peering-policy

Globecom 2014 - Next Generation Networking Symposium

1992

